
Mike Fechner, Consultingwerk Ltd.
mike.fechner@consultingwerk.de

OpenEdge Legacy Application 
Modernization by Example



Consultingwerk Ltd.

http://www.consultingwerk.com/ 2

 Independent IT consulting organization
 Focusing on OpenEdge and related technology
 Located in Cologne, Germany, subsidiary in UK
 Customers in Europe, North America, Australia and South Africa
 Vendor of developer tools and consulting services
 28 years of Progress experience (V5 … OE11)
 Specialized in GUI for .NET, Angular, OO, Software Architecture, 

Application Integration



SmartComponent Library

 Helps to protect your investment in your OpenEdge based 
application

 The framework is designed to modernize existing OpenEdge
applications and to provide the foundation of new projects

 In the cloud and on premise
 UI flexibility – Desktop, Web & Mobile
 The architecture of the SmartComponent Library simplifies 

integration with future technologies and the implementation of 
new business requirements.

OpenEdge Application Modernization by Example 3



Agenda

 Introduction / Application Modernization
 Modern OpenEdge Application Architecture
 ADM2 SDO migration
 TTY Update editing migration
 ABL GUI migration
 OSIV3G Modernization example

4



Modernization Strategies 

 Modernization of the whole application?
– Going from ABL GUI to GUI for .NET or Web or Mobile
– What is the “final” UI technology
– GUI for .NET as an intermediate / integration with legacy GUI 

while the backend is rearchitected

 Or do we (first) add a few new features?
– Mobile client for parts of the application
– REST/REST(ful) interfaces for parts of the application

OpenEdge Application Modernization by Example 5



Quality of the application

 Are parts of the application reusable?
– With no or little changes
– Are major functional changes required?
– Are major changes to the database structure required?

 Can parts of the application serve to describe the requirements
– Legacy code review as part of the requirements definition
– Is the existing source code the only (complete) description of 

the application functionality?

OpenEdge Application Modernization by Example 6



Skills of development team

 New development process (let’s get agile)
 New tools (Progress Developer Studio, SCM, Unit Tests, 

Frontend tools)
 New architecture: Distributed 
 New development languages

– OOABL
– html, JavaScript, TypeScript, rapidly changing
– Desktop technologies

OpenEdge Application Modernization by Example 7



Modernization Examples in this presentation

 The modernization examples provided in this presentation 
demonstrate refactoring techniques based on simple examples

 These or similar techniques can be used for other types of ABL 
legacy applications

 Foundation for source code migration is always 
– understanding of existing code structure/architecture
– understanding of target architecture
– a concept
– tools
– experience
– trial and error, or let’s call it a proof-of-concept

OpenEdge Application Modernization by Example 8



Agenda

 Introduction / Application Modernization
 Modern OpenEdge Application Architecture
 ADM2 SDO migration
 TTY Update editing migration
 ABL GUI migration
 OSIV3G Modernization example

9



OERA OpenEdge Reference Architecture

 Architecture blue print for service-oriented OpenEdge applications
 Initially released with OpenEdge 10.0 (15+ years)
 Primary goals at the time

– AppServer enabling OpenEdge applications
– Building non-monolithic OpenEdge applications
– Supporting client flexibility
– Providing guidance for use of the ProDataset
– Providing guidance for use of OOABL (later, around OE10.1+)

OpenEdge Application Modernization by Example 10



OERA today

 Fast forward to 2015 …
 Modernization of OpenEdge applications more relevant than ever; 

especially since Telerik acquisition and demands for UI flexibility
 OEAA – OpenEdge Application Architecture, redefining the OERA
 OERA back on focus, foundation of the CCS (common 

component specification) project as a vehicle for community 
and Progress driven architecture-spec efforts

 More detailed specs, rather than just programming samples
 Specs that an application or framework could be certified against
 CCS starting to influence “in-the-box” features
OpenEdge Application Modernization by Example 11



Business Entities

 Business Logic Component in the Business Service Layer
 Manages a set of database tables

– Customer
– Order/OrderLine/Item (read-only)

 CRUD actions (create, read, update, delete)
 Custom actions, verbs of the entity (PutCustomerOnCreditHold)
 Primary backend component for the JSDO

– Kendo UI, Kendo UI Builder
– NativeScript

OpenEdge Application Modernization by Example 12



The OpenEdge Application Architecture (OEAA)

OpenEdge Application Modernization by Example 13

Can be 
ABL GUI

That is 
the JSDO

RESTful,
SOAP,

…



Agenda

 Introduction / Application Modernization
 Modern OpenEdge Application Architecture
 ADM2 SDO migration
 TTY Update editing migration
 ABL GUI migration
 OSIV3G Modernization example

14



ADM2 SDO migration

 SmartDataObjects (SDO’s) were introduced with Progress 
Version 9 and the ADM2

 SmartDataObjects have a similar responsibility within an 
application as a Business Entity
– Centrally managing all read and update access to a database table
– Based on temp-tables
– Providing dedicated hooks for validation and calculated fields
– Providing standards for change tracking and error reporting
– Providing a central location for custom code that fits into the scope of the 

set of database tables

OpenEdge Application Modernization by Example 15



OpenEdge Application Modernization by Example 16



OpenEdge Application Modernization by Example 17



Reasons to migrate SDO’s to Business Entities

 Procedural nature
 Unclear separation between frontend and backend
 Complicated API when used from outside the ADM2
 Customization complicated, lots of code, understood only by a few 

developers
 Single table interface, Proprietary change tracking mechanism 

based on two temp-tables (a prototype of the ProDataset)
 AppBuilder tooling required for ADM2
 ProDataset better supported with modern tooling and UI 

OpenEdge Application Modernization by Example 18



SDO migration

 Well defined source code structure
 Well defined patterns for internal procedures/functions
 Meta data defined in preprocessor directives
 SDO RowObject temp-table can serve as foundation for Business 

Entities

OpenEdge Application Modernization by Example 19



OpenEdge Application Modernization by Example 20



Source code parsing using Proparse

 ABL syntax parser, abstract view on ABL source code, based on 
ANTLR

 Eliminates the need for text based source code analysis
– Resolves issues with line-breaks, abbreviated keywords, mixed 

order of keywords
 Open source

– github.com/oehive/proparse
– github.com/consultingwerk/proparse
– github.com/riverside-software/proparse

 Actively maintained in various forks, support for 11.7 ABL syntax
OpenEdge Application Modernization by Example 21



Proparse

 http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/
core/JPNode.html

OpenEdge Application Modernization by Example 22

http://www.joanju.com/analyst/javadoc/index.html?org/prorefactor/core/JPNode.html


OpenEdge Application Modernization by Example 23



SDO to Business Entity Migration

 SDO structure imported into SmartComponent Library Business 
Entity Designer

 Functionality implemented as a plugin to the tool
– Not relevant for all users of the Business Entity Designer, can be disabled
– Allows for easy customization in fork of the plugin

 Wizard supports changes to the SDO structure, e.g. 
adding/removing/renaming fields of the RowObject temp-table; 
application of new naming standards

OpenEdge Application Modernization by Example 24



Demo

 Use Business Entity Designer plugin to convert SDO into 
Business Entity

OpenEdge Application Modernization by Example 25



Source Code migration 

 Migration of arbitrary source-code influenced by existing coding 
style

 Migration of SDO source code requires
– Location of relevant source code
– Conversion of procedures/functions to methods
– Modify procedural invocation of sub-routines to class based 

invocation
– Change access to RowObject fields to new temp-table name
– …

OpenEdge Application Modernization by Example 26



Proparse based source-code migration

 Extension to Proparse
– ABL based API’s to locate relevant code
– enabling Proparse for in-memory manipulation of source code

 Alternative is to use Proparse for understanding of legacy code 
and simple OUTPUT TO or LONGCHAR operations to build new 
source code

 XFEF, COMPILE listing sometimes used as well. But majority of 
input is present in Proparse

OpenEdge Application Modernization by Example 27



OpenEdge Application Modernization by Example 28

Continued on next slide



OpenEdge Application Modernization by Example 29

Recursively processes 
JPNodes

Injected into NodeWalker, 
rewrites RowObject
references in AST

Returns modified function 
source code



OpenEdge Application Modernization by Example 30



Demo

 Migration Routines for 
– Calculated Field source code
– Validation Procedures
– Test Business Entity / Calculated Fields in Business Entity 

Tester
– Test Update and Validation using source code
– Define RESTful Endpoint for the Business Entity

OpenEdge Application Modernization by Example 31



Define RESTful endpoints using Annotations

OpenEdge Application Modernization by Example 32



OpenEdge Application Modernization by Example 33



Agenda

 Introduction / Application Modernization
 Modern OpenEdge Application Architecture
 ADM2 SDO migration
 TTY Update editing migration
 ABL GUI migration
 OSIV3G Modernization example

34



OpenEdge Application Modernization by Example 35



UPDATE EDITING Blocks

OpenEdge Application Modernization by Example 36



Single field validation within EDITING Block

OpenEdge Application Modernization by Example 37



UPDATE EDITING Blocks

 Commonly used in TTY and early GUI applications
 Full of validation logic / Lookup functionality (locating foreign key 

descriptions)
 Tied to UI through “INPUT <fieldname>” references
 MESSAGE Statement used for error messages
 NEXT-PROMPT provides field that should receive input after error
 Record locked during duration of the UPDATE Statement

OpenEdge Application Modernization by Example 38



UPDATE EDITING Blocks

 Iterated for every keystroke or GO-PENDING
 When invoked on GO-PENDING, it’s similar to a commit to a 

Business Entity
– Validating all fields at once
– Processing update when no validation error occurred
– Returning validation error to user (with instruction of next field)

 Code flow in EDITING Block very similar to typical Business Entity 
validation

OpenEdge Application Modernization by Example 39



Business Entity Validation based on UPD EDITING 

OpenEdge Application Modernization by Example 40



Business Entity Validation based on UPD EDITING 

 IF w-oldf OR GO-ENDING not required; Business Entity typically 
validates all fields at once
– Removing at least one level of blocks in the code

 “INPUT <fieldname>” replaced with temp-table field reference
 DISPLAY statements replaces with update of temp-table field
 MESSAGE/NEXT-PROMPT statements replaced with API call to 

return validation message to the consumer of the Business Entity 
and control target field

OpenEdge Application Modernization by Example 41



Demo

 Proparse based migration of UPDATE EDITING Blocks into 
Business Entity Validation block

OpenEdge Application Modernization by Example 42



Agenda

 Introduction / Application Modernization
 Modern OpenEdge Application Architecture
 ADM2 SDO migration
 TTY Update editing migration
 ABL GUI migration
 OSIV3G Modernization example

43



ABL GUI Migration

 Existing GUI (or TTY) screen layout may serve as a starting point 
for new UI’s
– Highly dependent on UX of new application
– Highly dependent on “quality” of layout of new application

OpenEdge Application Modernization by Example 44



OpenEdge Application Modernization by Example 45



Screen layout migration

 Screen layout from static code can be refactored based on 
Proparse
– FRAME definitions sometimes tricky to understand 
– Multiple FRAME Statements for a single FRAME
– VIEW-AS phrase from Data Dictionary 
– Default properties of widgets

 Walking the widget tree typically simpler – however this requires 
changes to application runtime and is not trivial when building 
general purpose tools

OpenEdge Application Modernization by Example 46



Abstract view on screen layout

OpenEdge Application Modernization by Example 47



Abstract view on screen layout

 Allows generation of various UI’s 
– GUI for .NET
– Angular 
– Kendo UI Builder
– Meta-Data for UI repository database
– …

OpenEdge Application Modernization by Example 48



GUI Trigger Code

 Typically used for validation or control of the UI
 Contains references using widget attributes (:SCREEN-VALUE or 

:SENSITIVE, etc.) or INPUT <fieldref>
 May contain business logic that should be moved to Business 

Entity (typically when accessing DB records), LEAVE Triggers 
typical prospect for validation

OpenEdge Application Modernization by Example 49



OpenEdge Application Modernization by Example 50



Migrated Trigger Code

OpenEdge Application Modernization by Example 51

Widget Façade classes allow 
mapping of widget attributes 

to control properties



Agenda

 Introduction / Application Modernization
 Modern OpenEdge Application Architecture
 ADM2 SDO migration
 TTY Update editing migration
 ABL GUI migration
 OSIV3G Modernization example

52



OSIV / OSC
• OSIV Service Center: Joint venture of 7 Swiss counties (cantons)
• Maintaining state insurance for occupational disabilities
• Approval of therapies
• Perform Disability and treatment Assessments
• Billing (by doctors, clinics, opticians, occupational disabilities, etc.) 
• Document management
• 1300 users
• Very specific domain functionality
• Accepted by the user base, no real competition



Why “refactoring”
● Maintenance effort high
● Training of new users and developers hard
● Aged technology
● Resources / Motivation of developers / Agile methods



OSIV3G: Soft Migration

Migrated Application 
Modules

Current OSIV 5.x

+ additional Fields and
Tables e.g. GUID‘sOSIV-DB Framework 

DB‘s

Harvesting of existing
Code



Sneak Preview



Sneak Preview



Example challenge: Interaction between 
Back and Frontend

• Existing OSIV Business Logic in large parts suitable as 
foundation for new OSIV3G (functional and structural), 
especially validation

• Validation may also provide color coding to represent field 
status etc. 

• Validation may have to prompt the user
• Web applications typically:

Request (from browser) – Response (from server)
• No Input-Blocking (not possible to wait for user input in 

Business Logic)



Sample: Yes/No PROMPT in validation

• Demand is to keep the validation flow in major parts 
„as is“

• Validation may encounter question requiring user 
input: “Are you sure?” etc.



Sample: Yes/No PROMPT in validation



Sample: Yes/No PROMPT in validation



Migration using MessagePrompt API (SCL)

• Backend – API maintains list of questions (unanswered and 
answered)

• Same API Call may ask a new question of return an existing 
answer

• Supports multiple questions per routine: Questions are 
flagged with GUID identifying thise location in code

• Support for multiple iterations (Loops, FOR EACH, …): Each 
question is also flagged with a return PUK value



• Questions will be returned to UI in a standard temp-table 
field

• Current Update-Request will be cancelled (typically before 
the DB transaction is started)

• UI presents unanswered questions to the user and repeats 
the same update request

• Repeat this flow if additional questions are required

Migration using MessagePrompt API of SCL



JSON Representation of the question



Questions

65http://www.consultingwerk.de/


	Foliennummer 1
	Consultingwerk Ltd.
	SmartComponent Library
	Agenda
	Modernization Strategies 
	Quality of the application
	Skills of development team
	Modernization Examples in this presentation
	Agenda
	OERA OpenEdge Reference Architecture
	OERA today
	Business Entities
	The OpenEdge Application Architecture (OEAA)
	Agenda
	ADM2 SDO migration
	Foliennummer 16
	Foliennummer 17
	Reasons to migrate SDO’s to Business Entities
	SDO migration
	Foliennummer 20
	Source code parsing using Proparse
	Proparse
	Foliennummer 23
	SDO to Business Entity Migration
	Demo
	Source Code migration 
	Proparse based source-code migration
	Foliennummer 28
	Foliennummer 29
	Foliennummer 30
	Demo
	Define RESTful endpoints using Annotations
	Foliennummer 33
	Agenda
	Foliennummer 35
	UPDATE EDITING Blocks
	Single field validation within EDITING Block
	UPDATE EDITING Blocks
	UPDATE EDITING Blocks
	Business Entity Validation based on UPD EDITING 
	Business Entity Validation based on UPD EDITING 
	Demo
	Agenda
	ABL GUI Migration
	Foliennummer 45
	Screen layout migration
	Abstract view on screen layout
	Abstract view on screen layout
	GUI Trigger Code
	Foliennummer 50
	Migrated Trigger Code
	Agenda
	OSIV / OSC
	Why “refactoring”
	OSIV3G: Soft Migration
	Sneak Preview
	Sneak Preview
	Example challenge: Interaction between �Back and Frontend
	Sample: Yes/No PROMPT in validation
	Foliennummer 60
	Foliennummer 61
	Migration using MessagePrompt API (SCL)
	Foliennummer 63
	JSON Representation of the question
	Questions

