
Mike Fechner, Consultingwerk Ltd.

James Palmer, Consultingwerk Ltd.

james.palmer@consultingwerk.de

Unit Testing for Dummies

Writing Unit Tests

http://www.consultingwerk.de/ 2

Unit Testing ABL Applications 3

Mike Fechner James Palmer

Consultingwerk Ltd.

http://www.consultingwerk.de/ 4

▪ Independent IT consulting organization

▪ Focusing on OpenEdge and related technology

▪ Located in Cologne, Germany, subsidiaries in UK and Romania

▪ Customers in Europe, North America, Australia and South Africa

▪ Vendor of developer tools and consulting services

▪ 28 years of Progress experience (V5 … OE11)

▪ Specialized in GUI for .NET, Angular, OO, Software Architecture,

Application Integration

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

5

Introduction

▪ Developer of SmartComponent Library Framework for

OpenEdge Developers

▪ Source code shipped to clients, 99% ABL code

▪ Used by over 25 customers

▪ Up to weekly releases (customers usually during development on

a release not older than 3 month)

▪ Fully automated update of the framework DB at client

▪ Almost no regression bugs within last 10 years

▪ Can only keep up that pace due to automation

Unit Testing ABL Applications 6

From a recent real world example

▪ Windows 10 Creators Upgrate (April 2017) breaks INPUT

THROUGH statements from Progress 8.3 - OpenEdge 11.7

▪ Used in a method to verify email addresses (MX record lookup),

manual test of that functionality not likely

▪ Jenkins Job alerted us around noon after the Windows update

was applied to the build server

▪ Only two days later, discussions around the issue on

StackOverflow, Progress Communities and later in PANS

Unit Tests saved the day! As we had a fix in place already!

Unit Testing ABL Applications 7

From a recent real world example

▪ A pretty simple API got broken; caused by a Windows update

▪ No matter if it’s Progress’ fault or Microsoft – it’s a 3rd party

▪ We execute our Unit Tests on OpenEdge 10.2B, 11.3, 11.6 and

11.7

▪ We execute our Unit Tests on Windows 10 and Linux (VMware)

▪ Considering to add additional Windows Versions in VM’s because

of the Easter 2017 experience

Unit Testing ABL Applications 8

Introduction

▪ “In computer programming, unit testing is a software testing

method by which individual units of source code, sets of one or

more computer program modules together with associated control

data, usage procedures, and operating procedures, are tested to

determine whether they are fit for use.”, Wikipedia

▪ A Unit should be considered the smallest testable component

▪ Unit Tests may be automated

▪ Automated Unit Tests simplify regression testing

▪ Write test once, execute for a life time

Unit Testing ABL Applications 9

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

10

Demo

▪ Creating Unit Test Project

▪ Writing a simple test class

Unit Testing ABL Applications 11

Demo

▪ Execute Unit Test in ABLUnit

▪ ABL Unit Launch Configuration in PDSOE

▪ ABLUnit View / Perspective

▪ Executing a single Unit Test Method

Unit Testing ABL Applications 12

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

13

Structure of a Unit Test

▪ (ABL) Unit Tests may be developed in procedures and in classes

▪ A Unit Test is a method or internal procedure which executes a

piece of code and asserts the result of that piece of code

▪ Unit Tests may be included in the compilation unit which is tested

▪ Unit Tests may be placed in separate class or procedure files to

keep them separated from deployed code (my preference)

▪ Unit Test classes and methods or procedures may not have

parameters

▪ Unit Test methods or procedures are annotated with @Test.

Unit Testing ABL Applications 14

Test Annotations

▪ (ABL) Unit Tests are annotation driven

▪ Documented in the Progress Documentation

▪ Well hidden in the “Progress Developer Studio for OpenEdge

Help”

▪ “Annotations supported with ABLUnit”

▪ https://documentation.progress.com/output/OpenEdge117/pdfs/de

vstudio/devstudio.pdf

Unit Testing ABL Applications 15

https://documentation.progress.com/output/OpenEdge117/pdfs/devstudio/devstudio.pdf

Test Annotations

Unit Testing ABL Applications 16

Initialization/cleanup annotations

▪ @Before and @After methods can be used to initialize and shut

down framework components (or mocks of those) required to

execute all unit test methods/procedures in test class/procedure

▪ @Setup and @TearDown methods can be used to initialize and

cleanup for every test method in a test class

– Ensure that every test has the same starting point, e.g. loading

of data into temp-tables etc.

Unit Testing ABL Applications 17

Tiny little ABLUnit bug …

▪ @Test (expected=“ExceptionType”).

▪ Don’t add a space before the period. ABLUnit will ignore the

annotation parameter then

– Logged and confirmed as a bug

Unit Testing ABL Applications 18

Assert-Classes and methods

▪ Simple way to test a value received by the tested method

▪ STATIC methods

▪ A single method call that

– Tests a value

– THROW’s an error when the value does not match the

expected value

– Fire and forget

Unit Testing ABL Applications 19

Assert-Classes and Methods

▪ OpenEdge.Core.Assert

▪ Consultingwerk.Assertions.*

▪ Roll your own

Unit Testing ABL Applications 20

Unit Testing ABL Applications 21

▪ Demo roll your own Assert

Unit Testing ABL Applications 22

Testing PROTECTED members

▪ When unit test is in a seperate class, it only has access to

PUBLIC methods of the class to be tested

▪ Making internal methods PUBLIC for the purpose of testing is the

wrong approach!

▪ Solution:

– Unit Test class can inherit from class to be tested to access

PROTECTED

– (some) Unit Test methods may be placed inside the class to be

tested to access PRIVATE members

– A combination
Unit Testing ABL Applications 23

▪ Demo Unit test of a protected class member

Unit Testing ABL Applications 24

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

25

Unit Testing Tooling

▪ #1 tool supporting Unit Testing: Structured Error Handling

– Unit Tests rely heavily on solid error handling

– Unit Testing tool can’t trace errors not thrown far enough

▪ ABLUnit OpenEdge’s Unit Testing tool integrated into PDSOE

▪ Proprietary ABL Unit Testing tools

– ProUnit

– OEUnit

– SmartUnit (component of the SmartComponent Library)

▪ All very similar but different in detail

Unit Testing ABL Applications 26

JUnit legacy

▪ NUnit, JSUnit, ABLUnit, SmartUnit, …

▪ Most unit tests follow the JUnit conventions

▪ Usage of @Test. annotations (or similar)

▪ JUnit output file de facto standard

– xml file capturing the result (success, error, messages, stack

trace) of a single test or a test suite

– Understood by a bunch of tools, including Jenkins CI

– No formal definition though

Unit Testing ABL Applications 27

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

28

Object oriented or procedural?

▪ Procedures can be unit tested

▪ In fact, ABLUnit supports the execution of test-procedures as well

▪ OO-thinking however simplifies writing testable code

▪ Procedural code has tendency to be monolithic

▪ “Mocking” of dependencies requires patterns such as factories or

dependency injection

– In theory possible with procedures

– More natural in object oriented programming

Unit Testing ABL Applications 29

Writing testable code

▪ A huge financial report or invoice generation is barely testable in

whole

▪ Large

▪ May call sub routines

▪ If it fails, what has been causing this?

– A bug in code

– False assumptions

– Wrong data in DB?

▪ Output: A PDF file, how to assert this?

Unit Testing ABL Applications 30

Writing testable code

▪ Break up financial report into a bunch of smaller components

▪ Test individual components

▪ Test report as a whole

▪ This allows to narrow down source of reported errors

▪ Separate report logic from output logic

– Financial report should return temp-tables first

• This can be tested

– A separate module produces PDF output based on temp-table

data

• Testing difficult
Unit Testing ABL Applications 31

Errors must be THROWN

▪ BLOCK-LEVEL ON ERROR UNDO, THROW almost mandatory

▪ Alternative Form of solid error handling

▪ Unit Testing tools don’t capture ** Customer record not on file

(138) when written to stdout or a message box

Unit Testing ABL Applications 32

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

33

Mocking Dependencies

▪ Writing Unit Tests (for complex code) is a permanent fight against

dependencies (and the bugs in them)

▪ If the PriceInfoService relies on the CustomerBusinessEntity, the

ItemBusinessEntity, an InventoryService and the framework’s

AuthorizationManager you’re always testing the integration of 5

components

▪ Who’s fault is it, when the test fails?

▪ How do we test extreme situations? Caused by unexpected data

returned from one of the dependencies?

Unit Testing ABL Applications 34

Mocking Dependencies - Wikipedia

▪ “In object-oriented programming, mock objects are simulated

objects that mimic the behavior of real objects in controlled ways.

A programmer typically creates a mock object to test the behavior

of some other object, in much the same way that a car designer

uses a crash test dummy to simulate the dynamic behavior of a

human in vehicle impacts.”

▪ “In a unit test, mock objects can simulate the behavior of complex,

real objects and are therefore useful when a real object is

impractical or impossible to incorporate into a unit test.”

Unit Testing ABL Applications 35

Mocking

▪ Requires abstraction of object construction

▪ PriceInfoService should not NEW CustomerBusinessEntity as this

would disallow to mock this

▪ Rather rely on Dependency Injection or CCS Service Manager

component (or similar) to provide CustomerBusinessEntity or a

mock based on configuration

▪ Same technique applies to any other sort of dependent

components

Unit Testing ABL Applications 36

CCS Business Entity getData instead of FIND in DB

Unit Testing ABL Applications 37

Agenda

▪ Introduction

▪ A simple ABL Unit Test

▪ Structure of a Unit Test

▪ Unit Testing Tooling

▪ Writing testable code

▪ Mocking dependencies

▪ Dealing with Data

38

Dealing with Data

▪ We’re using ABL to develop database applications

▪ Application functionality highly dependent on data in a database

▪ That’s a resource that’s difficult to deal with …

Unit Testing ABL Applications 39

Don’t use a shared database for Unit Tests

▪ Your tests may rely on stock data or price data in the database

▪ A different developer may modify those records for his tests

▪ This can break your test

Unit Testing ABL Applications 40

Don’t reuse your own database

▪ Your test sequence will include tests that modify data

▪ Maybe there is even a test to remove the item record that some

other test depends on

– Suddenly after adding this new test, a different test fails as the

database contents are no longer the same

Unit Testing ABL Applications 41

Solutions to the database dependency

▪ Always restore a known database state from a backup

▪ Or rebuild a database for each test run from .d and .df

– This may be easier when the database schema may change

during a test sequence

▪ You may need to rebuild a database multiple times during a test

sequence

▪ Produces lots of Disk I/O

▪ Disk I/O on one of the SSD’s of the build server if the bottleneck in

our test environment (CPU and memory barely busy)

Unit Testing ABL Applications 42

Transactions

▪ When used carefully database transactions can be a solution to

test modifying or deleting records

– Execute deletion of a record

– Test that it’s really gone (CAN-FIND)

– UNDO transaction in test-class

▪ May cause side-effects if the code to be tested relies on a specific

transaction behavior influenced by the fact that there’s an outer

transaction now

Unit Testing ABL Applications 43

Mock the code that accesses the DB

▪ May follow OERA or CCS principles

▪ Data Access class should be the only code

that ever access the database

▪ Not even the business entity should be able

to know that the data access class is using data

from an XML file instead

Unit Testing ABL Applications 44

Price Info Service

Item Business

Entity

Item Data Access

Questions

45http://www.consultingwerk.de/

